俳句は五・七・五の十七音からなり、短歌は五・七・五・七・七の三十一音からなる。
ここに現れる数が全て素数であるという事実は素数好きの大好きな話題の一つです。
偶然とはいえ、昔の日本人は素数の美しさを感じ取っていたのかもしれません。
三三七拍子なんてものもあります(十三音)。
この話が好きだった私は高校生のときに次の概念を導入して遊んでいました:
音数が素数からなる句に分けて歌うことができる素数というわけです。狭義には俳句素数はを、短歌素数はを指します。
が歌素数であることと素数であることは同値であり、が歌素数であることとが双子素数であることは同値です*1。
従って、「歌素数が無数に存在するか?」という問は 双子素数予想=「双子素数は無数に存在するであろう」と同じです。
一方で、次の定理が成立します*2:
いつも通り番目の素数をと表しています。証明には弱いGoldbach予想を使うので、まずGoldbach予想を復習しましょう:
これは2016年現在未解決の予想です。一方、次の弱いGoldbach予想は2013年にHelfgottが証明したと宣言しています*3。
Goldbach予想を仮定すれば弱いGoldbach予想を示すことができますが、逆は示せません(これが"弱い"と呼ばれる理由です。奇数Goldbach予想や三項Goldbach予想とも言います)。
定理'1の証明. 弱いGoldbach予想により、以上の任意の素数は俳句素数である。また、以上の任意の素数は歌素数である(を以上の素数とするとき、に対して弱いGoldbach予想を適用すればよい)。とし、が歌素数であると仮定する()。このとき、なる素数は歌素数となる。というのも、に対して弱いGoldbach予想が適用できるからである。は歌素数、は歌素数、は俳句素数、は歌素数なので、数学的帰納法によって定理の証明が完了する。 Q.E.D.
定理'1により素数というものは割と万能に歌を詠めることが分かります。
俳句と短歌を一般化した長歌と呼ばれる和歌がありますが、こちらは
の長さで詠まれる歌のことを言います(は正整数)。そこで、型の素数のことを長歌素数と呼ぶのも楽しいでしょう。ついつい、長歌素数の長さの長歌を詠みたくなります。
証明. とは互いに素なので、Dirichletの算術級数定理より従う。 Q.E.D.
各句の音数を相異なる素数にしたいという欲求に駆られた場合は次の概念に至ります:
6より大きい任意の整数は相異なる素数の和として表すことができる - INTEGERSによって、「を除く任意の素数に対して或るが存在して、は強歌素数である」ことが分かります。
実は次の定理を証明することができます:
証明のキーとなるのは次の深い定理です:
この定理によって弱いGoldbach予想が十分大きい奇数に対して成立することが分かりますが(Helfgott以前の大きな結果!)、漸近公式まで分かっていることが定理3の証明で効いてきます。は以下の素数の個数とします。
定理3の証明. 奇数を二つの素数を用いてと書き表す表し方の総数はを超えないので、に関する素数定理による漸近評価の式よりもVinogradovの定理によるの漸近評価の式の方が打ち勝つことから、次の系が成り立つ:
これで定理3のの場合は証明されている。また、をを満たすような素数とし、系によって奇数を相異なる三つの奇素数の和として表すことによって、は強歌素数であることが分かるので、の場合も証明された。を強歌素数とし、を相異なる個の素数の和として表したとき*4に現れる最大の素数を、そこに現れない奇素数を一つとってとする。。このとき、をなる素数とし、系によって奇数を相異なる三つのより大きい素数の和として表すことによって、は強歌素数であることが分かる。従って、数学的帰納法によっての場合も十分大きい素数は強歌素数であることが示される。 Q.E.D.
二・三・五・七・十一・… と各句の音数を小さい素数順に並べた長さで読む素数長歌も最近流行っていいます。と定義し、なる素数を素数長歌素数と呼んでみましょう。まず、素数定理から次の漸近公式を証明することができます。
昔、最初の万個程の素数から様々なデータをとって眺めていたとき、この漸近公式は絶対成り立つだろうな〜と考えていたことがあります。そのときは、Gaussがからまでの和を瞬時に足してと答えた方法を真似たheuristicな議論によって導きましたが、次のようにちゃんと証明することができます*5:
証明. は素数を表すことにすると、
が成り立つ。
が得られる。従って、
と合わせることによって
が示された。これに再び素数定理 を適用すれば主張が得られる。 Q.E.D.
この予想に対してheuristicな議論を行ってみましょう。
Heuristicな考察 以下のという形の正整数の個数をとすると、命題より
が成り立つ。また、以下の正整数が素数である確率は素数定理より大体である。従って、
と近似できるので、であることから予想は正しそうに思える。 考察終わり
素数長歌素数最初の100個()
*1:ちなみに、私は双子素数ではなく素数双子と呼ぶことを提唱しています。 integers.hatenablog.com
*2:ただし、後述の弱いGoldbach予想の証明が正しかった場合。
*3:arXivにプレプリントがあります。未だに出版されていないようですが、英語版Wikipediaには"the claim is now broadly accepted"と書かれています。
*4:一つだけ考えれば十分。
*5:少なくとも1903年のLandauのテキストには載っています。
*6:この形では当ブログでは証明してないかもしませんが、少なくとも1899にde la Vallée Poussinが証明した誤差項評価よりははるかに緩いです。